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The modified Boussinesq equations given by Nwogu (19934 are rederived in terms of 
a velocity potential on an arbitrary elevation and the free surface displacement. The 
optimal elevation where the velocity potential should be evaluated is determined by 
comparing the dispersion and shoaling properties of the linearized modified Boussi- 
nesq equations with those given by the linear Stokes theory over a range of depths 
from zero to one half of the equivalent deep-water wavelength. For regular waves 
consisting of a finite number of harmonics and propagating over a slowly varying 
topography, the governing equations for velocity potentials of each harmonic are a 
set of weakly nonlinear coupled fourth-order elliptic equations with variable coeffi- 
cients. The parabolic approximation is applied to these coupled fourth-order elliptic 
equations for the first time. A small-angle parabolic model is developed for waves 
propagating primarily in a dominant direction. The pseudospectral Fourier method is 
employed to derive an angular-spectrum parabolic model for multi-directional wave 
propagation. The small-angle model is examined by comparing numerical results 
with Whalin’s (1971) experimental data. The angular-spectrum model is tested by 
comparing numerical results with the refraction theory of cnoidal waves (Skovgaard 
& Petersen 1977) and is used to study the effect of the directed wave angle on the 
oblique interaction of two identical cnoidal wavetrains in shallow water. 

1. Introduction 
Boussinesq-type equations have been commonly used to describe weakly nonlinear 

and weakly dispersive wave propagation in shallow water. These equations are 
derived based on the assumption that the weak nonlinearity represented by the ratio 
of wave amplitude to water depth, e = ao/ho, is in the same order of magnitude as the 
frequency dispersion denoted by the square of the ratio of water depth to wavelength, 

A major limitation of Boussinesq-type equations is that they are only applicable 
to a relatively shallow water depth. For example, to keep errors of the phase velocity 
estimated by the best form of the linearized Boussinesq equations within 5% of that 
determined from the linear Stokes theory, the water depth has to be less than about 
one-fifth of the equivalent deep-water wavelength (Madsen, Murray & Ssrensen 
1991). For short waves or in intermediate depths, Boussinesq-type equations are 
incapable of describing wave propagation correctly, or even worse, they may become 
unstable. This behaviour poses two difficulties in modelling water wave propagation. 

t Present address: Center For Coastal Studies, Scripps Institution of Oceanography, University 
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Firstly, one has to use different equations in different water depths and deal with 
the difficulty of matching these equations. Secondly, even in the shallow-water region 
numerically generated short waves will produce erroneous results and could cause 
instabilities. 

Recently, numerous attempts have been made to extend the range of applicability 
of Boussinesq-type equations to deep water by improving their linear dispersion 
characteristics. Witting (1984) used a set of conservative equations to investigate 
wave propagation in a constant-depth channel bounded by two rigid impermeable 
walls. The depth-averaged and mean free surface velocities used in his Boussinesq- 
type equations were expanded into a Taylor series in terms of a pseudo-velocity. 
Coefficients in the series were then determined to yield a Pad6 approximation to the 
Taylor expansion of the dispersion relation given by the linear Stokes wave theory. 
Using the [2/2] Pad6 approximation, Witting obtained good results for both short and 
long waves. However, it is difficult to extend Witting’s approach to two horizontal 
dimensions with a varying depth. 

McCowan & Blackman (1989) modified the conventional Boussinesq equations 
(Peregrine 1967) by introducing an effective depth and a dispersion tuning parameter, 
which were chosen to match the dispersion properties of the first-order Stokes waves. 
In shallow water the effective depth is identical to the actual depth, whereas in deeper 
water the effective depth is restricted to the upper part of the water where most of the 
wave action occurs. Such an approach is, however, only applicable to monochromatic 
waves and it is not clear if it is applicable to a varying topography. 

Madsen et al. (1991) formulated the conventional Boussinesq equations for con- 
stant depth in terms of volume flux components instead of the depth-averaged velocity 
components. They included in the momentum equations some higher-order terms, 
which were conventionally neglected in the process of deriving the Boussinesq equa- 
tions, and obtained a new form of Boussinesq equations. The weighting factor for 
these higher-order terms is adjusted so that the linear dispersion characteristics of the 
resulting Boussinesq-type equations are remarkably improved. Madsen & Ssrensen 
(1992) extended this set of Boussinesq-type equations for a slowly varying topogra- 
phy and introduced the linear shoaling gradient as another quantity to measure the 
improvement of the new equations. 

Nwogu (19934 formally derived an alternative form of the Boussinesq equations 
in terms of a horizontal velocity on an arbitrary elevation. He showed that from 
intermediate depth to deep water, the linear dispersion characteristics of the new 
set of equations are strongly dependent on the choice of the velocity variable. The 
linear dispersion properties become very similar to those of the first-order Stokes 
waves if a velocity close to mid-depth is selected as the velocity variable. This 
makes the new set of equations applicable to regular and irregular waves travel- 
ling from relatively deep water to shallow water. The highest order of the spatial 
derivatives in the equations derived by Nwogu is one order higher than that in the 
conventional Boussinesq equations. This creates a difficulty in specifying appropri- 
ate boundary conditions and increases the numerical effort for solving these new 
equations. 

On the other hand, the parabolic approximation has been developed rapidly as an 
efficient and practical tool for modelling wave propagation over large coastal areas. 
The parabolic approximation, typically involving converting an elliptic equation into 
a parabolic equation, not only reduces the computational efforts dramatically but 
also alleviates the burden of imposing the down-wave boundary conditions, which 
usually are unknown a priori for most coastal hydrodynamic problems. For regu- 
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lar waves consisting of a finite number of harmonics, Liu, Yoon & Kirby (1985) 
developed the first parabolic approximation model for the conventional Boussinesq 
equations. In their model waves must propagate in a dominant direction. Therefore, 
it is a small-angle parabolic approximation model. Recently, Kirby (1990) used the 
discrete angular spectrum method to develop a parabolic model for the conven- 
tional Boussinesq equations, in which the topography is allowed to vary only in the 
on-offshore direction. The parabolic approximation cannot be directly applied to 
Nwogu’s new Boussinesq-type equations, in which the horizontal velocity compo- 
nents and the free surface displacement are coupled together. The reason is that in 
the process of combining the governing equations into one equation in terms of the 
free surface displacement, the improvement made in dispersion properties cannot be 
preserved. 

The primary objective of this paper is to develop parabolic approximation models 
based on the modified Boussinesq equations. We first rederive Nwogu’s modified 
Boussinesq equations in terms of a velocity potential on an arbitrary elevation and 
the free surface displacement. The optimal elevation for the velocity potential is 
determined by comparing the dispersion and shoaling properties of the linearized 
modified Boussinesq equations with those given by the linear Stokes theory over a 
range of water depths from zero to one half of the equivalent deep-water wavelength. 
Because the governing equations can be combined into one equation in terms of the 
velocity potential while the improved linear dispersion properties are still preserved, 
we are able to apply the parabolic approximation. For regular waves propagating 
over a slowly varying topography, the governing equations for velocity potentials of 
each harmonic are a set of weakly nonlinear coupled fourth-order elliptic equations 
with variable coefficients. Up to now, all the existing parabolic models in water 
wave dynamics are based on second-order elliptic equations, such as the mild-slope 
equation. As far as we know, no one has applied the parabolic approximation to a 
non-homogeneous fourth-order ordinary or partial differential equation. In this paper 
we present a new approach to develop the parabolic approximation to a variable- 
coefficient fourth-order ‘ordinary’ differential equation with weak forcing, which may 
involve the other independent variable (see (4.14)). We find out that the accuracy 
of the parabolic approximation depends on the difference between the wavenumber 
of the forcing term and the characteristic wavenumber of the equation (i.e. the real 
root of the dispersion relation for the corresponding homogenous equation). For 
waves propagating primarily in a dominant direction, the governing equation for 
each harmonic can be rewritten formally as a fourth-order ‘ordinary’ differential 
equation with weak forcing depending on both independent variables. A small-angle 
parabolic model is developed and the justification of this model is discussed. The 
pseudospectral Fourier method used by Chen & Liu (1994) is extended to derive 
an angular-spectrum parabolic model for multi-directional wave propagation: the 
wave field is first decomposed into a series of wave modes by the pseudospectral 
Fourier method; then, the parabolic approximation is used to approximate the 
governing equations for each wave mode, which are a set of weakly coupled fourth- 
order ordinary differential equations. The small-angle model is tested by comparing 
numerical results with experimental data (Whalin 1971). The angular-spectrum model 
is examined by comparing the model results with the refraction theory of cnoidal 
waves (Skovgaard & Petersen 1977) and then is used to study the effect of the 
directed wave angle on the oblique interaction of two identical cnoidal waves. Finally, 
in concluding remarks we present an empirical formula to calculate the velocity wave 
field in relatively deep water. 
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2. Modified Boussinesq equations 
Consider a wave field bounded by a free surface z’ = [’(x’, y’, t’) and a stationary 

bottom z’ = -h’(x’,y’). A Cartesian coordinate system is adopted, with the x’-axis 
and the y’-axis locating on the still water plane and the z’-axis pointing vertically 
upwards. Let ho, 10 and a0 denote the characteristic water depth, wavelength and wave 
amplitude, respectively. The following dimensionless variables are defined : 

I: Chen and P. L.-F. Liu 

where co = (gho)’I2 is the linear-long-wave speed and G is the velocity potential; 
primes are used for dimensional variables. 

The dimensionless governing equations and boundary conditions for a potential 
flow with a free surface are 

a2G 
a z 2  

p2V2G + - = 0, -h < z < el ,  

where e = ~ / h o  and p 2  = (ho/lo)2 are parameters measuring nonlinearity and fre- 
quency dispersion, respectively, and V = (ax,  a,,). We assume that O(e)  = O ( p 2 )  << 1. 

Integrating (2.2) from z = -h to z = e[ and applying the kinematic boundary 
conditions (2.3) and (2.4), we obtain 

V .  [ L ‘ V @ d z ]  +;=O. 

Expanding the velocity potential 45 as 

n=O 

and substituting (2.7) into (2.2) and (2.4), we collect terms with multiplies of like 
order of even powers of p: 

= o  a @ O  - h < z < e [ ,  - 
a Z  1 on z =-h;  
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The general solution to Qi,, (n = 0,1,. . .) in (2.8) can be expressed as 

(2.9) 1 Qio = 4OO(X,Y,t), 
Qil = 4 1 0 ( X , Y ,  t )  - z v  . (hV400) - ;z2v2400, 

where 4w(x, y, t ) ,  &(x,y, t ) ,  etc. are constants of integration with respect to z. Hence, 
expansion (2.7) can be rewritten as 

L J 

Denoting Qi,(x, y ,  t )  as the velocity potential on an arbitrary elevation z 
from (2.10) we obtain 

@a(% Y ,  t )  = @(x, Y ,  z,(x, Y ), t )  

(2.10) 

= zdx, Y ) ,  

(2.11) 

Subtracting (2.11) from (2.10) and noting that Qi, = 400 + O(p2), we can express @ in 
terms of Qi,: 

(2.12) 

Substituting (2.12) into the mass conservation equation (2.6) and the dynamic free 
surface boundary condition (2.5) and neglecting 0(ep2, p4) terms, we obtain a new 
set of Boussinesq equations, called the modified Boussinesq equations, expressed in 
terms of the free surface displacement c and the velocity potential Qi, on elevation 

Qi = Qi, + p2 [(z, - z)V . (hVQi,) + i(z,2 - z2)V2Qia] + O(p4). 

z = z,(x,y): 

- a i  + V * [ (e l  + h)V@,] + p2V . { hV [z,V . (hVQi,) 
at 

(2.13) 

(2.14) 
at 

From (2.12), we have 

(2.15) 

where u, = VQilz=za is the horizontal velocity at z = z,. Substituting (2.15) into 
the leading-order terms in (2.13) and in the gradient of (2.14) and replacing VQi, 
in the higher-order terms by u,, one can show that the resulting equations are the 
alternative form of the modified Boussinesq equations derived by Nwogu (1993a), 
who also solved his equations numerically in the time domain (Nwogu 1993a, b) .  

Only two unknowns, @, and 5, appear in the modified Boussinesq equations 
(2.13) and (2.14) instead of three unknowns in the alternative form of the modified 
Boussinesq equations derived by Nwogu. Furthermore, (2.13) and (2.14) can be 
combined into one equation in terms of Qi,. Therefore, in the remainder of this paper 
we shall carry out analyses and discussions based on (2.13) and (2.14). 

VQi, = u, - p 2 [V . (hVQi,) + z,V2@,] Vz, + O(p4), 
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3. Linear properties of the modified Boussinesq equations 

of (2.13) and (2.14) become (primes have been dropped) 

I: Chen and P. L.-F. Liu 

In the case of constant depth, the corresponding linearized dimensional equations 

(3.1) 
a[ 
- + hV2@, + (a  + 1/3)h3V4@, = 0, 
at 

where 

is a constant. 

modified Boussinesq equations (3.1) and (3.2) are given by 

a = i(zu/h)2 + (za/h) (3.3) 

The phase velocity C and the group velocity Cg associated with the linearized 

W 2  C2 = - = gh 
k2 1 - a(kh)2 

[ 1 - (a + 1/3)(kh)2 

(kW2/3 
[l - ~ ( k h ) ~ ]  [l - (a  + 1/3)(kh)2] 

(3.4) 

(3.5) 

where k is the wavenumber and o is the frequency. Expressions (3.4) and (3.5) have 
also been given by Nwogu (1993~). Comparing with those given by the linear Stokes 
theory over a range of depths from zero to one half of the equivalent deep-water 
wavelength l o  defined as l o  = 2ng/02, Nwogu (1993~) showed that the dispersion 
properties of the linearized modified Boussinesq equations strongly depend on the 
choice of the CI value. 

To extend the range of applicability of the modified Boussinesq equations, we 
define the sum of relative errors of the phase and group velocities over the range 
0 < h/ lo  < 0.5 as 

0.5 

Il(4 = 1 [(C/CI - + (Cg/Cg, - u2] d(h/lo), (3.6) 

where CI and Cg, are the phase and group velocities given by the linear Stokes theory. 
Minimizing Il(a), we find a = -0.3855, which corresponds to the elevation z ,  = 

-0.522h (see (3.3)). The maximum relative errors of the phase and group velocities 
over the range 0 < h/lo < 0.5 are 1.37% and 6.80%, respectively. We note that Nwogu 
(1993~) obtained a slightly smaller value for a, which is -0.390, by minimizing only 
the relative errors of the phase velocity. 

Besides the phase velocity and group velocity, Madsen & Sarrensen (1992) intro- 
duced ‘linear shoaling gradient’ as another quantity to measure the improvement of 
the new set of equations. For a train of monochromatic waves propagating over a 
mild slope, the linearized modified Boussinesq equations predict (through the WKBJ 
method) that the relative increase rate of the wave amplitude A due to shoaling is 

1 dA S 
A dh h’ 

- - -- _ _  

where S is the linear shoaling gradient and is expressed in terms of kh: 

2~r(kh)~( 1 - a4) 
S(kh) = - as, 1 - a(kh)2 

(3.7) 
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with 
a1 = 1 + (a  + 1/3)(k/1)~ [ ~ ( k h ) ~  - 21 , (3.9) 

a2 = 1 + (a + 1 /3 ) ( I~h)~  [ 5 ~ ( k h ) ~  - 61 , (3.10) 

(3.11) a3 = 1 - 6(a + 1 /3 ) (kI~)~  + (2a + 5a2 + [l - (1 + 2a)’I2]} 

1 1 - (2a + l ) ( k I ~ ) ~  + a(a + 1/3)(k/1)~ 
a4 = - 

2 1 - 2(a + 1/3)(I~h)~ + a(a + 1 /3 ) ( I~h)~’  

On the other hand, the linear Stokes theory gives (Madsen & Serrensen 1992) 

1 dAl Sl 
-- --_  - 
Al dh h ’  

(3.12) 

(3.13) 

(3.14) 

where 

(3.15) 
2klh sinh 2klh + 2(k1h)~( 1 - cosh 2klh) 

(2klh + sinh 2k1h)~  Sl(klh) = 

and kl satisfies the dispersion relation 

o2 = gkl tanh klh. (3.16) 

From the dispersion relations (3.4) and (3.16), kh and klh can be expressed in terms 
of h/&. So can S and Sl. Integrating (3.7) and (3.14) with respect to h/&, we obtain 

(3.17) 

We remark that the shoaling gradient is not a very good quantity to measure the 
linear shoaling effect. According to (3.17), the same deviation of the shoaling gradient 
has a different effect on the relative shoaling amplitude in different relative depth 
(has less effect as relative depth increases). The deviation of the shoaling gradient in 
intermediate depths and deep water exaggerates the actual difference of the shoaling 
amplitude. 

Considering the shoaling effect in the determination of the a value, we minimize 
the following sum of relative errors: 

over the range [0,0.5] and obtain a = -0.3808. Figure 1 shows the comparison 
between the phase velocity, group velocity and shoaling amplitude given by the lin- 
earized modified Boussinesq equations and those given by the linear Stokes theory for 
a = -0.3808 (obtained by minimizing 12(a, O S ) ) ,  a = -0.3855 (obtained by minimizing 
Il(a)) and a = -2/5 (with which (3.4) becomes the [2/2] Pad; approximation to the 
fourth-order Taylor expansion of g h  tanhkhlkh). For a = -0.3808 and a = -0.3855, 
the relative errors of the phase and group velocities remain small over the entire 
interval h/& E [0,0.5]. However, the relative errors of the corresponding shoaling 
amplitude increase as depth increases (the shoaling effect imbedded in the modified 
Boussinesq equations is overestimated). When h/Ao > 0.35, the relative errors of 
the shoaling amplitude are in excess of 10% (see the solid line and dashed line in 
figure lc). We could have improved the shoaling property by choosing a different a 
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FIGURE 1. Comparison between (a) the phase velocity, (b)  group velocity and (c) shoaling amplitude 
given by the linearized modified Boussinesq equations and those given by linear Stokes theory for 
different c1 values: -, a =  -0.3808; .. -, c1 = -0.3855; ...., a = -2 /5 .  

value. But such an improvement is at a cost of increasing the errors of the phase and 
group velocities. If the shoaling effect is really important, the modified Boussinesq 
equations may not be extended to deep water ( h / &  = O S ) ,  but they can be extended 
to at least as deep as h/Ao m 0.35, the upper limit within which the relative errors of 
shoaling amplitude are less than 10%. 

The value a = -0.3808, obtained by minimizing the sum of the relatives errors of the 
phase velocity, group velocity and shoaling amplitude over the range h/& E [0,0.5], 
gives the best overall improvement of the dispersion and shoaling properties. However, 
we would rather select a = -0.3855 as the optimal value than a = -0.3808. The 
reasons are as follows. Firstly, comparing the solid lines (a = -0.3808) and dashed 
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lines (CY = -0.3855) in figure 1, one can see that although the shoaling property 
is improved when CY = -0.3808 is used, such an improvement is not dramatic and 
is accompanied by the degeneration of the dispersion properties. Secondly, if we 
minimize I 2  over the range h/L0 E [0,0.35], we obtain CY = -0.3858, which is very 
close to a =  -0.3855. Thirdly, if the shoaling effect is not important, we only need to 
minimize Il and obtain CY = -0.3855, which gives the best overall dispersion properties 
over the range h/ l0  E [0,0.5]. 

Madsen & Ssrensen (1992) chose their weighting factor B = -(a+ 1/3) = 1/15 (i.e. 
CY = -2/5) from the Pad6 approximation. Using this value, they found the shoaling 
gradient of their new Boussinesq equations agrees very well with that given by the 
linear theory. However, the error of the group velocity corresponding to this value 
may be too large (see the dotted line in figure lb)  for their Boussinesq equations to 
accurately describe the wave propagation stating from deep water. 

In the above discussion the nonlinearity has been ignored. Because of shoaling, the 
wave amplitude and hence the nonlinearity, decrease as the depth (or p2) increases. 
Therefore, as long as the wave amplitude in the relatively deep water is so small that 
the Boussinesq approximation, i.e. O(E)  = O(p2) << 1, is still valid when the wave 
reaches the shallow-water region, the modified Boussinesq equations can be used to 
model wave propagation from relative deep water to shallow water (Nwogu 1993a, b). 

We remark that although the modified Boussinesq equations are derived under the 
Boussinesq assumption, since the goal of deriving these equations is to extend their 
applicability into relatively deep water, we treat p2 as O(1) from now on. 

4. Parabolic models 
The highest order of the spatial derivatives in the modified Boussinesq equations 

(2.13) and (2.14) is four. This makes the equations difficult to solve in the time 
domain. In this section we shall apply the parabolic approximation to the modified 
Boussinesq equations in the frequency domain and develop a small-angle model and 
an angular-spectrum model. 

Considering regular waves, we can expand @a and [ as finite Fourier series in time: 

N 1 
c#ja(x, y, t )  = C +n(x, y)e-inwt + c.c., 

n=O 

. N  

n=O 

where C.C. stands for the complex conjugate. 
Substituting (4.1) and (4.2) into (2.13) and (2.14), we obtain 

(4.3) 

n-1 N-il 

inocn - v .  (hV+n) - ;v. csv+n-s + c [CsV+n+s + cn+svdi] 
s=l 

- p2v . p n  = 0, 
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where 
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(4.5) 
Z 2  

2 
f n ( x ,  y )  = z , V .  (hV4,)  + “V24, = ah2V24, + z ,Vh .  V &  

In (4.3) and (4.4) the overbar is used to indicate the corresponding complex conjugate. 
The zeroth harmonic 4o has been ignored since it corresponds to a slowly varying 
steady state, i.e. O(V40) = O(E) ,  which does not have any contribution to other 
harmonics up to O(r) .  

To develop parabolic models, we first combine equations (4.3) and (4.4) into one 
equation in terms of velocity potential only. Substituting (4.4) into (4.3) and neglecting 
O(e2)  terms, we obtain 

N - n  1 f n-1 

I N-n  

- C [s(+s + p2fs)V+n+s - ( n  + S ) ( @ n + s  + p2fn+s)v6s] 9 (4-7) 
s=l 

where n = l , . .  . , N .  For the nth harmonic, the linear dispersion relation of (4.7) is 

(4.8) 
n202 
-- - h  1 - (a + 1 / 3 ) , ~ ~ ( k n h ) ~  

k,2 1 - ap2(knh)2 

When n = 1, the dimensional form of (4.8) is exactly the same as (3.4). Therefore, 
the improved dispersive characteristics of the modified Boussinesq equations with the 
optimal value of a are preserved. Alternatively, one may try to eliminate $,, from (4.3) 
and (4.4) to obtain a combined equation for in. However, this cannot be done without 
introducing successive approximations in which p2 is assumed to be small. When the 
successive approximations are used, the improved dispersive properties of the new 
equations may be destroyed. This indeed happens when we eliminate the velocity 
potential from (4.3) and (4.4) and obtain an equation for the free surface displacement: 
the corresponding linear dispersion relation is given by (4.8) with a = 0, which is 
worse than the linear dispersion relation of the conventional Boussinesq equations 
(a = -1/3) (Wu 1979). In Nwogu’s (1993~) paper, the alternative form of the modified 
Boussinesq equations is expressed in terms of the horizontal velocity components and 
the free surface displacement. Further approximations are necessary in order to 
combine the equations into one equation. If successive approximations are used to 
eliminate the velocity components in Nwogu’s equations and obtain an equation for 
the free surface displacement, the resulting linear dispersion relation also corresponds 
to (4.8) with CI = 0. This is one of the primary reasons for using the velocity potential 
in this paper. The parabolic approximation can then be applied to the resulting 
equation for the velocity potential. 

Assuming that the topography varies slowly, i.e. h = h(Ex,Ey), we can further 
simplify (4.7) by ignoring 0 ( e 2 )  terms: 

(a + 1/3)p2h3V4$, + PnV24,, + n2w24n = -C,p2h2Vh. V V 2 4 ,  



Modijied Boussinesq equations and associated parabolic models 361 

where 

PAX, y) = h + ap2n2a2h2, (4.10) 

(4.11) 

c, = 1 + 5a + (1  + 2a)”2. (4.12) 
In (4.9), the first term on the left-hand side and the first term on the right-hand side 
come from p2V . p n  in (4.7). 

Equation (4.9) is a set of weakly nonlinear coupled fourth-order elliptic equations 
with variable coefficients. The leading-order terms in (4.9), i.e. all terms on the 
left-hand side, describe the propagation of linear dispersive waves over a constant 
depth. The frequency dispersion is represented by the fourth-order derivative terms 
on the left-hand side of (4.9) as well as the second term in the coefficient Pn (see 
(4.10)) multiplied by V2&. The first two terms on the right-hand side of (4.9) denote 
the effects related to the slope of the bathymetry, such as refraction and shoaling, 
whereas the rest of terms on the right-hand side are contributed by nonlinearity. 
For the one-dimensional case, (4.9) can be reduced to a set of fourth-order ordinary 
differential equations, which are similar to those obtained by Madsen & Serrensen 
(1993). We remark that the fourth-order derivative terms in (4.9) vanish when 
a = -1/3, corresponding to the conventional Boussinesq equations. Once we solve 
(4.9) for 4,,(x,y) ( n  = 1,.  . . , N ) ,  the free surface displacement (,(x,y) (n  = 0,. . . , N )  
can be computed immediately from (4.4). In the following subsections, we shall 
develop two parabolic models to approximate (4.9), namely, the small-angle model 
and the angular-spectrum model. 

2 2  2 %(X,Y) = 1 +Zc# n 3 

4.1. Small-angle parabolic model 
For waves propagating primarily in the +x-direction, we assume that the variation 
of the wave field in the y-direction is small, i.e. 

0 (3) = o(cp’2), p = 1,2,3,4. (4.13) 

Moving terms containing y-derivatives to the right-hand side of (4.9), we obtain 

+ n2a2& = z, a44, a24, 
ax4 ax2 

(a + 1/3)p2h3- + P n -  (4.14) 

where 

Z = RHS - f i n - -  a 2 4 n  - (a + 1/3)p2h3 (2- a 4 4 n  + 9) (4.15) 
dY2 

and R H S  represents all terms on the right-hand side of (4.9). 
Consider a special case - linear waves propagate in the x-direction over a constant 

depth. In this case, Z = 0 and the general solution to (4.14) can be expressed as 
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a linear combination of exp(+ik,x) and exp(+kgx). In other words, the whole wave 
field consists of a propagating wave field and a non-propagating wave field. This is 
also true for general cases. 

To develop a small-angle parabolic model, we first separate the propagating wave 
field from the non-propagating wave field. Noting that is O(c) ,  we treat (4.14) as 
a fourth-order (with respect to x) non-homogeneous 'ordinary' differential equation 
with Z being the forcing term and rewrite (4.14) as two second-order (with respect to 
x) differential equations governing the propagating and non-propagating wave fields, 
respectively : 

4 n  = 4: + 4;, (4.16) 

with 

(4.17) 

(4.18) 

(4.19) 

Wn(X,y) = P n  - 2(a + 1/3)p2h3k,' = -(a + 1/3)p2h3 [k,' + (k;)'] > 0, 
where +k, and f iki  are the real and imaginary roots of the dispersion relation 

(4.20) 

(a  + 1/3)p2h3k4 - Pnk2 + n 2 0 2  = 0, (4.21) 

respectively. Thus, 

2 2 2h3 
P n  - [P,' - 4(a + 1/3)p n 0 ] 

k,'(X, Y) = , 2(a + 1/3)p2h3 
(4.22) 

(4.23) 

Equations (4.16)-(4.18) with r, given by (4.19) are equivalent to (4.14) (note that we 
have neglected O(c2)  terms in (4.19)). 

Since the non-propagating wave field decays exponentially, for wave propagation 
problems, it usually can be neglected. If the non-propagating wave field is neglected, 
the original fourth-order differential equation (4.14) can be approximated by a second- 
order differential equation governing the propagating wave field (from (4.17) and 
(4.19)) 

(4.24) 

We further split the propagating wave field into the forward and backward propa- 
gating wave fields and rewrite the second-order differential equation (4.24) as two 
first-order differential equations governing the forward and backward wave fields, 
respectively: 

4: = 4: + 4;9 (4.25) 

-- a24; -+'&;+ 4(a + 1/3)p2h3kn ~~ akn 84; + y h s p a c e * - 4 p t n  

ax2 wfl ax ax wn 

= ik,4: + O,, 
ax 

(4.26) 
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with 

(4.27) 

(4.28) 

where 

Neglecting the backward wave field as a first approximation, we obtain 
P,(x,Y) = Pn - 6(a + 1/3)p2h3k:. (4.29) 

(4.30) 

Note that for the forward wave field, = (ik,)P+Z + O ( F )  ( p  = 1,2,3,4) and the 
order of magnitude of each term in % is less than or equal to O(E) .  Therefore, partial 
derivatives in % can be replaced by ( ikn)P+f.  After the terms whose order of 
magnitude is less than O ( E )  have been neglected, becomes (superscript + has been 
dropped henceforth) 

(4.32) 

a n s ( X ,  Y )  = skn-s [aP2h2k:(ks + kn-s) - (2ks + kn-s)] (4.33) 

?ns(x, Y) = nkskn+s(2 + aP2h2kskn+s) + skn+s(kn+s + aP2h2k:) 
- ( n  + s)ks(ks + ap2h2k;+,). (4.34) 

Now we investigate how accurately the first-order equation (4.30) approximates the 
original fourth-order equation (4.14) for the forward wave field. When % = 0, the 
general solution to (4.30) is 

(4.35) 

where C, is a constant of integration. By direct substitution, one can observe that 
solution (4.35) is also a solution to (4.14) (up to O(E) ) .  When % # 0, we only 
need to check the particular solutions. For simplicity, we consider the constant-depth 
situation. Two types of forcing are examined : resonant and non-resonant forcing. 

( a )  For k,, = k,, % = A,(y)exp(ik,,x) represents resonant forcing (the forcing 
amplitude is allowed to vary in the y-direction). The particular solutions to (4.14) 
and (4.30) are given by 

A,x exp(ik,x) 
2ikn [an - 2(a + 1/3)p2h3ki] ’ +np = 

and 
A,x exp (ik,x) 

2iknwn ’ +np = 

(4.36) 

(4.37) 

respectively. According to the definition of W, (see (4.20)), (4.37) is exactly the same 
as (4.36). 
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particular solutions to (4.14) and (4.30) become 
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(b) For k,, # k,, Z = A,(y)exp(ik,,x) represents non-resonant forcing. The 

A,  exp (ikflxx) ’” = (a  + 1/3)p2h3kix - P,,k,’, + n2w2 

(4.38) 

and 

(4.39) An exp ( i k n x x )  - A,  exp (ik,,x) - nP - ’ - 2k,W,(kn - h x )  (a  + 1/3)p2h3(k,x -kn)2k, [k,’ + (kg)2] ’ 

respectively. Thus, the difference between solutions (4.38) and (4.39) is 

1 

(k,, + k, )  [k,’, + (Q2] 
- 1 

2k, [k,’ + ( k ~ ) ~ ]  { A,  exp(ikfl,x) 
(a  + 1/3)p2h3(k, - k,) 

Note that the expression in the bracket is proportional to (kflX -k , , ) .  Therefore, the 
accuracy of the approximation depends on the difference between the x-component 
wavenumber of the forcing term k,, and the characteristic wavenumber k,. For 
resonant and near-resonant forcing, (4.30) approximates (4.14) very well. On the other 
hand, when the forcing wavenumber (more precisely, the x-component wavenumber) 
is far away from k,, (4.30) is no longer a good approximation to (4.14). However, if 
we replace the denominator of the coefficient of the forcing term in (4.30), 2k,W,, by 
-(a + 1/3)p2h3(k,, + k,)[kix +  ICE)^] (according to (4.20), these two expressions equal 
each other as k,, +. k,), the solution given by (4.30) is also a solution to (4.14) for any 
k,, (regardless of whether k,, is equal to k ,  or not) in the constant-depth situation 
(for slowly varying depth, (4.30) will become a good approximation to (4.14)). The 
requirement for this replacement is that the x-component wavenumber of the forcing 
should be correctly estimated beforehand. 

From (4.31), the forcing term Z actually consists of linear terms and nonlinear 
terms. The x-component wavenumber of each term in (4.31) can be correctly es- 
timated for waves propagating primarily in the +x-direction. In this situation, the 
x-component wavenumbers of the linear terms in (4.31) are close to k,, whereas the 
x-component wavenumbers of the nonlinear terms +,&., and &&+, in (4.31) are 
close to (k,-, + k,) and (k,+, - k,), respectively. Thus, there is no need to correct the 
coefficient of the linear terms since k,, = k,, i.e. the denominator 2k,W, in the last 
term in (4.30) remains the same for the first two linear terms in (4.31). However, 
since the differences between k, and k,, for the nonlinear terms +,+,-, and &&+s in 
(4.31) (i.e. k,, - kn = k,-, + k, - k,  and k,, - k,  = k,+, - k, - k,, respectively) may 
become large in intermediate depths and deep water, the denominator 2k,W, should 
be replaced by 

-(a + 1/3)p2h3(k,-, + ks + k n )  [(kn-s + ks)2 + (k5;)2] 

and 

-(a + 1/3)p2h3(k,+, - k, + k,) [(k,+, - kJ2  + ( k 3 2 ]  9 

respectively. In so doing, we finally obtain the small-angle parabolic model for the 
forward wave field &, which consists of a set of weakly nonlinear coupled parabolic 
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equations with variable coefficients : 

365 

(4.40) 

where n = 1, ... , N .  
In the case of constant depth, on substitution of the plane wave solution: +,, = 

exp[i(k,,x + kflyy)], where k,, and k, are the wavenumber components in the x- and 
y-direction respectively, the corresponding linearized equations of (4.9) and (4.40) 
give k;, + kiy = k; and k,,/k, = 1 - ik;y/k;, respectively. The angular limit of 
our small-angle model (4.40) turns out to be the same as that of the small-angle 
model to the mild-slope equation derived by Radder (1979) (the contribution from 
the variation of the topography and the nonlinearity are neglected), because both 
small-angle models use the same parabola k,,/k, = 1 - ;kiy/k; to approximate the 
circle k;, + k;y = k; in the (k,,k,)-plane. In practice, the bandwidth in the angular 
spectrum for the small-angle model should be 10 = arctan(k,/k,)l < 30" (Chen & Liu 
1994). 

We can factor out the fast variable component in 4,, by introducing 

$fl = Y,exp(ik;x) 

into (4.40) and obtain 

where 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

and k i (n  = 1 , .  . . , N )  are a set of constant reference wavenumbers. 

displacement Cn(x, y) by substituting (4.41) into (4.4). 
After solving (4.42) for Yfl(x,y) ( n  = 1, ..., N ) ,  we can obtain the free surface 

4.2. Angular-spectrum parabolic model 
To develop an angular-spectrum model to approximate (4.9) for multi-directional 
wave propagation, we first decompose the wave field into a series of wave modes 
including the entire discrete angular spectrum by the pseudospectral Fourier method 
(Chen & Liu 1994). Then, we apply the parabolic approximation to the governing 
equations for each wave mode. To decompose the wave field, we need to introduce a 
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reference depth D(x), which varies only in the x-direction, and rewrite (4.9) as 
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(4.45) 2 3 4  (a  + 1/3)p D V 4 n  + BnV24n + n2w24,, = -Un - i o f V n ,  
2 

where 
2 2  2 2 B J x )  = D + ap n w D , (4.46) 

n- 1  

Vn(x, y )  = C s [2 V 4 s  . V4n-s + ap2h2VV24s . V$n-s 
s=l 

+ ( 4 s  + ap2h2V24s)V24n-s] 

+ C [n(2V+s . V$n+s + ap2h2V24n+sV2$s) 

- S(+sV24n+s + ap2h2VV2$s . V$n+s) 

N-n  

s=l 

+ ( n  + s)(4n+sV2$s + ap2h2VV2+n+s . v + s ) ]  . (4.48) 
We assume that the wave field in the alongshore direction (y-direction) is periodic 
with a period L. After a linear transformation mapping the interval y E [O,L] to 
y” E [0,2n] is taken, (4.45) becomes 

E 

(a  + 1/3)p2D3 [ 2 
+ B n [ % + A o $ ]  + n w  2 2  4 n = - U n - i w - ~ n ,  

2 
(4.49) 

where 

A0 = (27~/L)~. (4.50) 
Now we use trigonometric polynomials to interpolate &(x,y”) in the y”-direction at 
the following set of collocation points (Gottlieb, Hussaini & Orszag 1984): 

Jj = rcj/M, j = O,.. .,2M - 1, (4.51) 

(4.52) 

where 

(4.53) 
1 

4;(x) = 4 n ( X ,  Y j ) ,  gj(Y”) = 2~ sin[M(P - Yjll cot[(Y - Y”j)/21. 

The interpolants gj(y”) ( j  = 0,. . . ,2M - 1) are trigonometric polynomials of degree M 
and at each collocation point y”,, gj(y”,) = 6,. The pth-order (p = 1,2,3,4) derivative 
of cjn(x,y”) with respect to y”, evaluated at the collocation y” = y”, is given by 

(4.54) 
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where 

is a 2M x 2M matrix. Specifically, 

and 

(4.55) 

(4.56) 

(4.57) 

When p > 2, the pth-order spectral differentiation matrix 0, can be written as a 
power of D2 if p is even and as a power of D1 (or D1 times a power of 0 2 )  if p is odd. 

From (4.56) and (4.57), D1 is a real antisymmetric matrix and 0 2  is a real sym- 
metric matrix. Hence, is also a real symmetric matrix, whereas Dzp+1 is a real 
antisymmetric matrix for p 2 1. 

Substituting (4.52) into (4.49), evaluating the resulting equation at each collocation 
point y" = y", ( m  = 0,. . . ,2M - 1) and noting (4.54), we obtain 

E 

2 

2M-1 

+ B, { * + no 1 [D2lmj& + n 2 d #  = -Uy - iw- V,", (4.58) 
j = O  

dx2 

where the superscript m denotes that the corresponding variable is evaluated at 
y" = y",. The dimensional forms of U r  and V r  are given in the Appendix. For a 
fixed n, equation (4.58) is a set of coupled ordinary differential equations for cj;(x) 
(m  = 0,. . . ,2M - 1). The main coupling is provided by the spectral differentiation 
matrices 0 2  and D4 = 0 2 0 2 .  Because 0 2  is symmetric, (4.58) (for a fixed n)  can be 
almost decoupled (in the sense that the leading-order terms are decoupled but O ( E )  
terms are still coupled together) by decomposing the wave field into a series of wave 
modes, i.e. by introducing the transformation 

2M-1 

= C Qmqq,4(X), m = 0,. . . ,2M - 1, (4.59) 
q=o 

where Q is a real orthogonal matrix such that 

The eigenvalues of 0 2  : -$/A0 ( 1  = 0,. . . ,2M - 1) and the transformation matrix Q 
can be given analytically (Chen & Liu 1994). 

Substituting (4.59) into (4.58), multiplying the resulting equation by Qml and sum- 
ming rn from 0 to (2M - l), we obtain 
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2M-1 

+n2c02q;=--E Qml , 1 = 0  ,..., 2M-1, (4.61) 
m=O 

in which the orthogonality of Q and 

QTD4Q = QTD2QQTD2Q = - [ t;' ... 1 (4.62) 4l 
t i$,-I  

from (4.60) have been used. 
To apply the parabolic approximation to (4.61), we need to impose another as- 

sumption on the topography: (h - D) - O(r ) ,  i.e. the deviation of the actual depth 
from the reference depth is of the same order of magnitude as the typical wave 
amplitude; then all the terms on the right-hand side of (4.61) have the same order 
of magnitude of O(r )  (see (4.47) and (4.48)). Under this assumption, for a fixed n, 
(4.61) is a set of almost decoupled fourth-order ordinary differential equations for 
q: (1 = 0,. . . ,2M - 1)  which is similar to (4.14). Therefore, the same procedure 
used to derive the small-angle parabolic model can be applied to obtain a parabolic 
approximation to (4.61). 

First, we separate propagating wave modes ((qt) ") from non-propagating wave 
modes ( ( T & ) ~ ) :  

(4.63) rf, = (rk)" + (yl;)e, 

(4.64) 

(4.65) 

with 

dx dx 
2(a + 1/3)p2D3 d(K,')2 d(y:)" 

[ dx dx 
.Y, = 

Fn 

1 2M-1 + F, E Qml (U: + iwfV,:) 2 , (4.66) 
m=O 

where K,(x) and Ki(x) are given by 

(4.67) 

and 

F,(x) = B, - 2(a + 1/3)p 2 3 2  D K ,  = -(a + 1/3)p2D3 [K: + (K,")2] > 0. (4.69) 

Then, we neglect all non-propagating wave modes and approximate (4.61) by 

2(a + 1/3)p2D3 -__ dK: d(q;)" -- 
dx dx - - [K; - $1 (q;)" + d2 (rt ) " 

dx2 F n  
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(4.70) 

We further split the propagating wave modes into forward and backward propagating 
wave modes: 

(d)" = (d)+ + (d - ,  (4.71) 

with 

(4.72) 

(4.73) 

(4.74) 

where 
E,l(x) = B, - 2 ( ~ +  1/3)p2D3(3K: - 2t:). (4.75) 

In the present study we assume that the backward propagating wave field is 
negligible. The governing equation (4.72) for the forward propagating wave modes 
then becomes (superscript + has been dropped henceforth) : 

2M-1 

C Qmr (U: + i 

m=O 
+ 2Fn(K,2 - t;)1/2 

In the expression for (U ,  + iweV,/2) (see (4.47) and (4.48)), the order of magnitude 
of all known coefficients is O(e) .  Therefore, dP+r/dxP (p = 1,2,3) in the expression 
for (Ur + ioeV:/2) can be approximated as 

(4.77) 

Now all terms on the right-hand side of (4.76) can be expressed in terms of q,4 (q  = 
0,. . . ,2M - 1; n = 1,. . . , N )  and do not involve the derivatives of q,4. Because the 
terms on the right-hand side of (4.61) are very complicated, we do not pursue a 
similar justification to that for the small-angle model. 

Note that for the nth harmonic, the propagation direction of each forward wave 
mode ylf, is arctan [tr/(K,2 - measured from the +x-direction. Equation (4.76) 
with (4.59) is called the 'angular-spectrum parabolic model', because for each har- 
monic, the wave field at each collocation point consists of contributions from 2M 
forward wave modes whose propagation directions cover the range from -90" to 
90°, i.e. the upper half of the angular spectrum. By solving (4.76) numerically for 
qf,(x) ( 1  = 0,. . . ,2M - 1;n = 1,. . . , N )  (e.g. Runge-Kutta method), we can find the 
velocity potential for each harmonic +,(x,y) (n = 1, ..., N )  from (4.59) and the 
corresponding free surface elevation [,(x, y )  (n = 0,. . . , N )  from (4.4). 
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5. Numerical examples 
Several numerical examples are given in this section to demonstrate the applicability 

of the modified Boussinesq equations as well as the parabolic approximation models. 
For all numerical examples, the optimal value of a = -0.3855 is used. 
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5.1. Small-angle parabolic model 
Whalin (197 1) conducted a series of laboratory experiments concerning wave focusing 
over a slowly varying topography. The wave tank was 25.603 m long and 6.096 m 
wide. In the middle portion of the wave tank (7.622 m < x < 15.242 m), eleven 
semicircular steps were evenly spaced and led to the shallower portion of the channel. 

The equation approximating the topography is given as follows (Whalin 1971): 

0.4572, 0 < x < 10.67 - G, 
10.67 - G < x < 18.29 - G, 
18.29 - G < x < 25.0, 

h(x,y) = 0.4572 + A(10.67 - G - x), 

G ( y )  = b(6.096 - Y ) ] ” ~  

(5.1) 
0.1524, 

(0 < y < 6.096). (5.2) 

{ 
where 

In both (5.1) and (5.2), all variables are measured in metres. The bottom topography 
was symmetric with respect to the centreline of the wave tank y = 3.048 m. A 
wavemaker was installed at the deeper portion of the channel where the water depth 
was 0.4572 m. Three sets of experiments were conducted for periods T = 1.0, 2.0 and 
3.0 s, respectively. Different wave amplitudes were generated for each wave period. 

Several mathematical models have been developed and applied to simulate Whalin’s 
experiments. Using the second-order Stokes theory, Liu & Tsay (1984) derived a model 
equation, which is a nonlinear Schrodinger equation with variable coefficients. They 
produced numerical results for wave periods of 1 and 2 s. Because the second- 
order Stokes wave theory was used, their model is unable to obtain more than two 
harmonics and is not valid for long waves, e.g. the T = 3.0 s cases. Liu et al. 
(1985) discussed two models for nonlinear refraction-diffraction of waves in shallow 
water: the conventional Boussinesq equations and the Kadomtsev-Petviashvili (KP) 
equation. They presented numerical results for the wave period of 3 s. These 
two models are restricted to shallow water and can not be extended to deal with 
intermediate depth cases, e.g. the T = 1.0 and 2.0 s cases in Whalin’s experiments. 
Rygg (1988) solved the conventional Boussinesq equations directly with a line by 
line iterative method and compared his numerical results with Whalin’s experimental 
data for the cases of T = 2.0 and 3.0 s. Solving Boussinesq-type equations in the 
time domain, Madsen & Ssrensen (1992) and Nwogu (19933) claimed that the new 
form of the Boussinesq equations they derived is capable of simulating all cases in 
Whalin’s experiments correctly. 

We now apply our small-angle parabolic model to all cases in Whalin’s experiments: 
T = 1.0,2.0 and 3.0 s, which in the deeper portion of the channel correspond to 
relative depth h/& = 0.293 1, 0.0733 and 0.0326, respectively. The pseudospectral 
Chebyshev method is employed to solve the small-angle model (Chen 1995). Because 
of the symmetry of the problem with respect to the centreline of the wave tank, the 
computational domain only consists of one half of the wave tank. No-flux boundary 
conditions are used along the right-hand sidewall and the centreline of the wave tank. 
The computational domain in the x-direction starts from the wavemaker x = 0 and 
ends at x = 25 m. Wavenumbers of each harmonic at x = 0 are used as reference 
wavenumbers k i .  
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FIGURE 2. Wave amplitude along the centreline of the wave tank for T = 1.0 s and = 1.95 cm. 
-, Small-angle model; - . -, results given by Nwogu (1993b); . . . ., results given by Madsen & 
Ssrensen (1992); - - -, results given by Liu & Tsay (1984); o o 0, experimental data (Whalin 1971). 

For the T = 2.0 and 3.0 s cases, the linear monochromatic boundary conditions are 
used as initial conditions at x = 0. Numerical results are practically identical to those 
given by Madsen & Serrensen (1992) and Rygg (1988) and agree with the experimental 
data quite well. Comparisons between numerical results and experimental data are 
not presented here. For the period T = 1.0 s and amplitude = 1.95 cm case, 
which the conventional Boussinesq equations are unable to predict correctly, the 
comparison between the present model results and the experimental data (Whalin 
1971) is shown in figure 2. Only two harmonics are considered and seven collocation 
points in the y-direction are used. The marching step in x-direction is 0.1 cm. In this 
case, because the phase mismatch between the free and bound second harmonic is not 
small, the second-order boundary condition is used as the initial condition to remove 
the spurious spatial variation of the incident wave amplitude (Madsen & Serrensen 
1993), i.e. to get rid of the parasitic free second harmonic in the incident wave. From 
figure 2, one can see that in spite of the scattering in the experimental data, the model 
results agree with the experimental data reasonably well, especially in the focal zone. 
The oscillation in the second harmonic (first observed by Madsen & Serrensen 1992) 
indicates that the free second harmonic is released on the top of the shelf (where the 
relative depth based on the free second harmonic is 0.3908) due to the abrupt change 
of the topography. The free and bound second harmonic propagate not only with 
different speeds but also in different directions (Madsen & Serrensen 1992). 

For comparison, the results given by Liu & Tsay (1984), Madsen & Serrensen 
(1992) and Nwogu (1993b) are also plotted in figure 2. In the focal zone, Nwogu’s 
results slightly overestimate the first harmonic, whereas Madsen & Serrensen’s results 
slightly underestimate the second harmonic. The oscillation phenomenon, which is 
predicted by our small-angle model and Madsen & Serrensen’s extended Boussinesq 
equations, however, was not shown in Nwogu’s results (it is understandable that 
Liu & Tsay’s numerical results did not show this phenomenon, because the second- 
order Stokes theory they used excludes the free second harmonic). According to 
the Stokes second-order theory, our modified Boussinesq equations and the extended 
Boussinesq equations given by Madsen & Serrensen, the amplitudes of the bound 
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second harmonic in the incident wave are 0.0950,0.0833,0.0276 cm, respectively (Chen 
1995). The second-order amplitude of the incident wave is slightly underestimated 
in the modified Boussinesq equations, whereas it is much more underestimated in 
Madsen & Ssrensen's new set of equations. This is why the incident wave can 
be treated as a linear wave in their model (they used the linear monochromatic 
boundary condition at the incident boundary) and the amplitude of the second 
harmonic they obtained is underestimated in the focal zone. Nwogu (1993b) also 
used the first-order boundary condition at the incident boundary. We remark that 
if the first-order boundary condition at the incident boundary is used, the spurious 
free second harmonic having the same amplitude as the bound second harmonic, 
which cannot be neglected in this case, will be released in the constant-depth region 
( h  = 0.4752 m). In this region, the modified Boussinesq equations are unable to 
describe the free second harmonic accurately because the relative depth based on the 
free second harmonic (h/& = 1.1725) is far away from the range of the applicability 
of the equations, which is h/Ao E [0,0.5]. Therefore, the second-order boundary 
condition should be used to get the correct results in this case. 

Similar results are obtained for the T =1.0 s and a0 = 0.75 cm case, which are not 
repeated here. 

5.2. Angular-spectrum parabolic model 

For normal incident waves propagating over a one-dimensional bottom h = h(x), the 
results given by the angular-spectrum model are identical to those given by the small- 
angle model without modifying the coefficients of the nonlinear terms, i.e. (4.30) with 
(4.31). Thus, the angular-spectrum can be applied only to cases with a nearly triad 
resonance (k, NN knfs f ks), e.g. in shallow water. We now apply the angular-spectrum 
model to study the refraction of a cnoidal wavetrain and the oblique interactions of 
two identical cnoidal wavetrains in shallow water. 

To construct a cnoidal wavetrain, an infinite number of harmonics should be used. 
In actual numerical integration, we can, however, only include a finite number of 
harmonics. Yoon & Liu (1989) demonstrated that if the first several harmonics of 
the cnoidal wave solution to the KdV equation are retained as the input to their 
parabolic model, the resulting cnoidal wavetrain does not have a uniform amplitude. 
An alternative approach, which we shall adopt, is to find initial conditions for the 
numerical integration that lead to permanent cnoidal wave forms in the constant- 
depth region (Kirby 1991). 

and the free surface displacement l' in finite 
Fourier series 

We expand the velocity potential 

N N 

Qa(x, t )  = (P, sin[n(kx - cot)], c(x, t )  = a, cos[n(kx - cot)], (5.3) 
n=l n=l  

which represent a uniform cnoidal wave propagating in the +x-direction with (P,, a, 
and k to be determined. A set of nonlinear algebraic equations for (P,, a, and k can 
be derived from the small-angle parabolic model without modifying the coefficients 
of the nonlinear terms, the expression for the free surface displacement, (4.4), and the 
relation between the wave height of a uniform cnoidal wave and the amplitude of 
each harmonic (Chen 1995). The Newton-Raphson method is used to obtain (P,, a, 
and k for given wave period T ,  wave height H and water depth h. 

The initial conditions of a uniform cnoidal wave with an angle of incidence 80 for 
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FIGURE 3. Refraction of a cnoidal wave over a mild-slope plain beach. -, Cnoidal wave 
refraction theory (Skovgaard & Petersen 1977); - - -, angular-spectrum model. 

the angular-spectrum model are given by 
2M-1 

+n(O,  Y) = -iqn exp(inky sin OO), vL(0) = C Q m l + r ( O ) .  (5.4) 
m=O 

When 80 # 0, the periodicity condition in the y-direction requires 

where p(# 0) is an arbitrary integer. 
We remark that although qn (n = 1, ..., N )  and k in (5.4) are determined based 

on the small-angle model, numerical tests show that when (5.4) is used as the initial 
input, the angular-spectrum model maintains the uniformity of the cnoidal wave as 
it propagates towards the shoreline. 

Skovgaard & Petersen (1977) presented a theoretical solution of the refraction of 
cnoidal waves over a gently sloping bathymetry whose contour lines are straight and 
parallel to the shoreline. With the basic assumption that the energy flux is a constant 
between adjacent wave orthogonals, they derived two nonlinear algebraic equations 
for the wave height and the elliptic parameter. 

To compare our angular-spectrum model with the cnoidal wave refraction theory, 
we have chosen the top row in table 1 in Skovgaard & Petersen's (1977) paper as the 
incident wave parameters: 

ho/& = 0.045, Ho/ho = 0.0826, 80 = 25.9", (5.6) 

where HO and ho are the wave height and water depth at x = 0, respectively, and 
A0 = gT2/2n is the deep-water wavelength. For incident cnoidal wave with period 
T = 3.0 s, the deep water wavelength is LO = 14.04 m and from (5.6) the water depth 
and wave height are ho = 0.6317 m and HO = 0.0522 m, respectively. The topography 
is given by 

h(x)  = D ( x )  = 0.6317 - 0.03~. (5.7) 
N = 7 and M = 16 are used and the numerical integration is carried out from 

x = 0 to x = 17 m with a marching step Ax = 0.1 m. The computational domain in 
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FIGURE 4. Dimensionless wave height H / h  as a function of dimensionless water depth h / &  for 
different angles of incidence: -, eo=-y; .... , eo = 30"; - - -, eo = 450. 

the y-direction is L = 16.35 m (p = 1 in (5.5)). The comparison between numerical 
results and theoretical results is shown in figure 3. The agreement is very satisfactory, 
especially when the nonlinearity is not too strong. When the beach slope, 0.03 (in 
(5.7)), is replaced by a gentler slope, 0.025, numerical results do not change. This 
confirms the assumption of the cnoidal wave refraction theory that the wave height 
is independent of the slope of the bathymetry (as long as it is very mild). 

For the same wave conditions, figure 4 shows the dimensionless wave height H / h  
as a function of the dimensionless water depth h/Ao for different angles of incidence: 
80 = 0", 8 0  = 30" and 80 = 45". The wave height decreases as the angle of incidence 
increases. 

Comparing the genus 2 solution to the KP equation with the solution based on 
the linear superposition of two cnoidal waves, Hammack, Scheffner & Segur (1989) 
showed the importance of nonlinear interactions between two identical cnoidal waves 
propagating over a constant depth with directed wave angles +80. The KP equation 
can only correctly describe weakly nonlinear and dispersive wave propagation over a 
constant depth with weak transversal modulation. Although the KP equation can be 
extended to deal with cases with a slowly varying topography (Chen & Liu 1995), for 
large directed wave angle, e.g. 80 2 30", all KP-type equations become inadequate for 
modelling weakly nonlinear and dispersive wave propagation. In this situation, one 
may use the angular-spectrum model instead. 

We now apply the angular-spectrum model to study the influence of the directed 
wave angle i-80 on the oblique interaction of two identical cnoidal waves propagating 
over a constant depth and a slope connecting two constant depths. The wave 
parameters used in our computations are very close to those of Hammack et d ' s  
experiment (KP1515 in table 1 in their paper): T = 2.55 s and H = 0.02 m. The 
incident wavelength is 4.25 m. Two different directed angles are considered: 60 = 22.5" 
and 80 = 45", which represent small and large directed wave angles respectively. 
N = 5,  M = 25, Ax = 0.1 m and p = 2 are used in numerical computations. The 
domain of computation in the y-direction covers two spatial periods. 

Figures 5(a) and 5(b) show the contour plots of the free surface displacement for 
the nonlinear interaction and linear superposition of two cnoidal waves propagating 
over a constant depth h = 0.3 m with directed angles 80 = f45" and 8 0  = f22.5", 
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FIGURE 5. Contour plots of ( ( x , y , t )  for linear superposition and nonlinear interaction of two 
identical cnoidal waves with directed wave angles (a) 00 = +45", (b)  00 = k22.5" at time 
t = nT(n = 0,1,. . .). -, Linear superposition; . . . ., nonlinear interaction. 
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FIGURE 6. A perspective view of the free surface displacement for (a) linear superposition, 
(b)  nonlinear interaction of two identical cnoidal wavetrains with directed wave angle 00 = k22.5" 
at time t = nT(n = 0,1,. . .). 

respectively. The values of contour lines are from -1.5 cm to 2.0 cm with an increment 
of 0.5 cm. In figure 5(a), for large directed wave angles, the difference between the 
nonlinear solution and the linear-superposition solution is very small. On the other 
hand, for small directed wave angles, figure 5(b) shows that the difference is quite 
large and the nonlinear numerical solution evolves along the +x-direction. From the 
perspective pictures shown in figures 6(a) and 6(b), we observe that for small directed 
wave angles the nonlinear interaction increases the length of a crest. This agrees with 
the experimental observation (Hammack et al. 1989). 

In his study of Mach reflection of a cnoidal wave from a vertical wall, Kirby (1990) 
showed that if the angle of incidence is small, a Mach stem evolves along the reflected 
wall. In contrast, when the angle of incidence is about 45", the wave field exhibits 
almost a regular reflection pattern. This is consistent with our numerical results. 
Therefore, we may draw a conclusion that when the directed angle of two identical 
cnoidal waves propagating over a constant depth is large, the nonlinear interaction is 
weak and the wave field exhibits a nearly linearly superimposed wave pattern. 
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FIGURE 7. Contour plot of the free surface displacement for two cnoidal waves propagating over a 
slope with directed wave angles (a )  00 = f45", (b)  80 = $22.5" at time t = nT(n  = 0,1,. . .). 

For the same incident wave conditions, figures 7(a) and 7(b) show the contour plots 
of the free surface displacement of two identical cnoidal waves with different directed 
angles propagating over a slope connecting two constant depths : 

x d 0, 
h(x) = 0.3 - 0.015~, 0 < x < 12, i"" 0.12, x > 12. 

(5 .8)  

The values of contour lines are -1, 0, 1, 2 and 3 cm. Figures 8(a) and 8(b) show the 
corresponding three-dimensional plots. From these figures, one can see that as the 
depth decreases, the nonlinearity increases and the crests of the surface displacement 
become longer, flatter and narrower. This tendency eventually leads to the formation 
of a hexagonal wave pattern. These features are also observed in the field (see 
figure 3 in Akylas' 1994 paper) and in the laboratory (Hammack et al. 1989). For 
O0 = f45", the hexagonal pattern develops in the shallower constant-depth region 
(i.e. x > 12 m), whereas for 80 = f22.5", it develops just before the end of the slope. 
The horizontal sides of the hexagons for 80 = f22.5" are much longer than those 
for O0 = +45". The hexagonal wave pattern for 80 = +45" is more stable than that 
for 00 = f22.5". But eventually all these hexagons will deform and disappear in the 
shallower constant-depth region as the waves propagate toward the shoreline. 

6. Concluding remarks 
We have formally derived the modified Boussinesq equations in terms of the 

velocity potential, Qj,(x, y, t) ,  evaluated on an arbitrary elevation z = z,(x, y), and the 
free surface displacement. We have showed that when QjE is evaluated at z = -0.522h, 
the corresponding modified Boussinesq equations have almost the same dispersive 
behaviour as that of the first-order Stokes waves for water depths ranging from 
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FIGURE 8. Three-dimensional plot of the free surface displacement for two cnoidal waves propagating 
over a slope with directed wave angles (a) 00 = +45", (b)  00 = f22.5" at time t = nT(n = 0,1,. . .). 

h /& = 0 to 0.5, where lo represents the wavelength in deep water. The shoaling 
property of the equations has also been discussed. It turns out that the shoaling 
property imposes an additional restriction on the water depth limit allowable for the 
modified Boussinesq equations to be extended. 

For regular waves propagating over a slowly varying topography, the governing 
equations for the velocity potentials of each harmonic are a set of weakly nonlinear 
coupled fourth-order elliptic equations with variable coefficients. The parabolic 
approximation has been applied to these fourth-order equations for the first time. 
We have found that the accuracy of the parabolic approximation to a fourth-order 
'ordinary' differential equation with a weak forcing term (which may involve the 
other independent variable) depends on the difference between the wavenumber of 
the forcing term and the characteristic wavenumber of the equation. Both a small- 
angle parabolic model for waves propagating primarily in a dominant direction and 
an angular-spectrum parabolic model for multi-directional wave propagation have 
been derived and their validity has been tested. These models in principle can be 
extended to simulate irregular wave propagation by discretizing the power spectrum 
of the incident wave evenly (Freilich & Guza 1984; Madsen & Ssrensen 1993). 
However, for a broad-banded spectrum, the implementation may be difficult and 
the parabolic models are not necessarily more efficient than direct simulation of the 
modified Boussinesq equations in the time domain. The angular-spectrum model 
is restricted to the situation where the deviation of the actual topography from a 
reference water depth (which varies in the on-offshore direction) is of the same order 
of magnitude as the typical wave amplitude and may not be applied to relatively deep 
water. 

Although many examples have shown that the modified Boussinesq equations can 
be extended to relatively deep water, the velocity field calculated from (2.12) does 
not give accurate results. For regular waves, when the velocity field is essential, we 
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suggest an empirical formula to calculate the velocity potential @(x, y ,  z ,  t )  once the 
velocity potential Qa(x, y ,  t )  is found : 

where k is given by (3.4). For an infinitesimal-amplitude periodic wave propagating 
in the x-direction over a constant depth, the maximum relative errors between the 
velocity components (u, w) given by above empirical formula and the exact velocity 
components ( U I ,  W I )  (without considering the nonlinearity) given by the linear theory 
over the range h/ io  E [0,0.5] and z / h  E [-l,O] are 

max {lul/lurl - l }  = 2.93%, (6.2) 
h/Lo€[0,0.5],z/h€[-l,O] 

max (Iwl/lwll - 1 )  = 2.94%. 
h/ lo€  [0,0S],~/h€ [- 1,0] 

(6.3) 

In relatively deep water, the nonlinearity should be very small to ensure the weak 
nonlinearity assumption is still valid in the shallow-water region. Therefore, as long 
as the bottom variation is small, the empirical formula (6.1) is a plausible way to find 
the velocity field in relatively deep water. 
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this paper. 

Appendix 
This Appendix gives the dimensional forms of the small-angle model and angular- 

spectrum model. All variables shown in this Appendix are dimensional; however, 
primes have been dropped for simplicity. 

In the dimensional form, the small-angle model, (4.42), becomes 

where 
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-p, - [p," - 4(a + 1/3)n2a2h3/g] 'I2 

2(a + 1/3)h3 (k32(x,Y) = , 

Y&,Y) = exp [i(ki+, - k,' - ki)x] [nkSk,+,(2 + ah2k,k,+,) 

+ sk,+,(k,+, + ah2k:) - (n + s)ks(ks + ah2k;+,)] 

x { (kfl+s - k s  + k,)  [(k,+s - k S l 2  + (k:I2] >-' . (A 10) 

The corresponding dimensional expression for the free surface displacement (4.4) is 
given by 

L s=l s=l J 

The dimensional form of the angular-spectrum model, (4.76), is 

2M-1 

m=O 

+ 

2F,(K,2 - t ? ) ' / 2  

where 

Bn(x) = D + an2a2D2/g, 

B, - [B," - 4(a + 1/3)n2a2h3/g] 1'2 

2(a + 1/3)h3 
K ~ ( x )  = 9 

F,(x) = B, - 2(a + 1/3)D3K;, 

&(x) = B, - 2(a + 1/3)D3(3K; - 2$), 

(A 15) 

(A 16) 
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The derivatives appearing in (A 17) and (A 18) are given by 

where 

q=o 
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